
The Ongoing MINEX API Specification 26 May 2006

The Ongoing Minutiae Interoperability Exchange Test
(MINEX)

 API Specification

Overview
The Minutiae Interoperability Exchange Test (MINEX) is an ongoing program to
measure the performance of fingerprint matching software utilizing interoperable
minutiae-based fingerprint templates. The content and format of those
interoperable minutiae-based fingerprint templates are defined in this
specification and are hereafter referred to as MINEX compliant templates.

Those wishing to submit software for MINEX testing shall be required to provide
NIST with an SDK (Software Development Kit) library which complies with the
API (Application Programmer Interface) specified in this document. At a
minimum, the SDK submitted must provide functionality to create MINEX
compliant templates based on individual fingerprint images. Support for matching
pairs of MINEX compliant templates is encouraged, but optional.

In addition to providing a general platform for testing the performance of
interoperable fingerprint systems, MINEX provides a mechanism for testing
compliance with NIST Special Publication 800-76 [1] (refer to section 7.4.1).

1 Fingerprint Image Data

1.1 Format

The SDK must be capable of processing fingerprint images supplied to the SDK
in uncompressed raw 8-bit (one byte per pixel) grayscale format. Each image
shall appear to have been captured in an upright position and approximately
centered horizontally in the field of view. The image data shall appear to be the
result of a scanning of a conventional inked impression of a fingerprint. Figure 1
illustrates the recording order for the scanned image. The origin is the upper left
corner of the image. The x-coordinate (horizontal) position shall increase
positively from the origin to the right side of the image. The y-coordinate
(vertical) position shall increase positively from the origin to the bottom of the
image.

Page 1 of 8

The Ongoing MINEX API Specification 26 May 2006

Figure 1 Order of scanned lines

Raw 8-bit grayscale images are canonically encoded. The minimum value that
will be assigned to a "black" pixel is zero. The maximum value that will be
assigned to a "white" pixel is 255. Intermediate gray levels will have assigned
values of 1- 254. The pixels are stored left to right, top to bottom, with one 8-bit
byte per pixel. The number of bytes in an image is equal to its height multiplied
by its width as measured in pixels; there is no header. The image height and
width in pixels will be supplied to the SDK as supplemental information.

1.2 Resolution and Dimensions
All images for this test will employ 500 PPI resolution (horizontal and vertical).

The dimensions of the fingerprint images will vary from 150 to 812 pixels in
width, and 166 to 1000 pixels in height.
Note – the SDK must be capable of processing images with any dimensions in these
specified ranges without the use of separately invoked cropping or padding facilities.
For example, SDKs which require cropping of large images must do so internal to the
operation of the create_template (see below) API call.

1.3 Sensor and Impression Types
All images used for testing in MINEX come from the POEBVA data set
described in NISTIR 7296 [2] (see Appendix B, Table 23 page 47) and thus have
been obtained from live-scan sensors (Smiths-Heimann ACCO 1394 and Cross
Match 300A). All images tested in MINEX are plain impression type images.

Page 2 of 8

The Ongoing MINEX API Specification 26 May 2006

2 800-76 Compliant Templates

To be considered MINEX compliant templates, all templates created must be
compliant with NIST Special Publication 800-76 [1] (refer to Table 12, page 26).
Two additional constraints imposed by MINEX upon the template requirements
defined above are:

• The Minutiae Quality field for each minutia shall be set to 0.

• The Finger Quality field will be input by the test application and shall be
output identically by the SDK at run-time. (I.e., the SDK is not to generate
this value)

Past participants in MINEX04 [2] may note that the requirements for templates
specified by the Ongoing MINEX test are identical except for the fields listed
below:

• In MINEX04, the field Finger Quality field had a range of values resulting
from re-mapping the NIST NFIQ [3] quality values (1 through 5) to the values
100,75,50,25 and 1 respectively. However, 800-76 re-maps these same NFIQ
quality values to 100,80,60,40, & 20 respectively.

• In MINEX04, the field Impression Type had a range of 0 through 3.
However, 800-76 limits the range of values to 0 and 2.

3 Testing Interface Description
MINEX participants shall submit an SDK which provides the following interface
(shown in C-style pseudo-code prototypes).

3.1 Pre-defined Values
The following are pre-defined values (constants) for use in specifying parameters
to the MINEX testing interface:

// Finger quality values

#define QUAL_POOR 20 // NFIQ value 5
#define QUAL_FAIR 40 // NFIQ value 4
#define QUAL_GOOD 60 // NFIQ value 3
#define QUAL_VGOOD 80 // NFIQ value 2
#define QUAL_EXCELLENT 100 // NFIQ value 1

// Impression type codes

#define IMPTYPE_LP 0x00 // Live-scan plain
#define IMPTYPE_NP 0x02 // Nonlive-scan plain

Page 3 of 8

The Ongoing MINEX API Specification 26 May 2006

// Finger position codes

#define FINGPOS_UK 0x00 // Unknown finger
#define FINGPOS_RT 0x01 // Right thumb
#define FINGPOS_RI 0x02 // Right index finger
#define FINGPOS_RM 0x03 // Right middle finger
#define FINGPOS_RR 0x04 // Right ring finger
#define FINGPOS_RL 0x05 // Right little finger
#define FINGPOS_LT 0x06 // Left thumb
#define FINGPOS_LI 0x07 // Left index finger
#define FINGPOS_LM 0x08 // Left middle finger
#define FINGPOS_LR 0x09 // Left ring finger
#define FINGPOS_LL 0x0A // Left little finger

3.2 Minutiae Extraction and Matching

3.2.2 Create Template

INT32
create_template(const BYTE* raw_image,
 const BYTE finger_quality,
 const BYTE finger_position,
 const BYTE impression_type,

 const UINT16 height,
 const UINT16 width,

 BYTE *template);

Description

This function takes a raw image as input and outputs the corresponding MINEX
compliant template. The memory for the template is allocated before the call (i.e.,
create_template() does not handle the memory allocation for the template
parameter). The function returns either success (0) or failure (non-zero). Failure indicates
a failure to enroll the image and will result in the output of a null template which will be
used in later comparisons.

Note – null templates are defined as containing the Record header and Finger View header
only, with zero minutiae information (i.e. Number of Minutiae shall be set to 0). Thus, it is a
32 byte template (26-byte Record Header + 4-byte Finger View header + 2 bytes for the
Extended Data Block length which is 0x0000). All other fields in the Record and Finger View
headers shall be set to their regular and accurate values.

Parameters

raw_image (input): The uncompressed raw image used for template creation.

finger_quality (input): The quality of the fingerprint image (e.g. QUAL_GOOD).

finger_position (input): The finger position code (e.g. FINGPOS_RI).

impression_type (input): The impression type code (e.g. IMPTYPE_LP).

height (input): The number of pixels indicating the height of the image.

Page 4 of 8

The Ongoing MINEX API Specification 26 May 2006

width (input): The number of pixels indicating the width of the image.

template (output): The processed template.

Return Value

This function returns zero on success or a documented non-zero error code otherwise.

3.2.3 Match Templates

INT32
match_templates(const BYTE *probe_template,

 const BYTE *gallery_template,
 float *score);

Description

This function compares two MINEX compliant templates and outputs a match score.
The probe_template parameter shall be compared to the gallery_template parameter (in
that precise order where the underlying matcher is order dependent). The score returned
is a floating-point number which represents the similarity of the original fingerprint
images from which the templates where created. Scores should not be quantized. It may
be assumed that memory for the score parameter is allocated before the call. Note that
comparisons in which either template is a null template (see 3.2.2 above) shall cause
the matching operation to fail and output a documented error code (see 3.3 below).

Parameters

probe_template (input): A template returned by create_template().

gallery_template (input): A template returned by create_template().

score (output): A similarity score resulting from comparison of the templates.

Return Value

This function returns zero on success (i.e. a valid score was produced) or a documented
non-zero error code on failure. In the latter case, the function shall return a score of -1.

Note – If the legitimate range of match scores includes the value -1, the participant must
inform the MINEX Test Liaison.

3.2.4 Get PIDs

INT32
get_pids(UINT32* feature_extractor,

 UINT32* matcher);

Description
This function retrieves CBEFF PID information which identifies the SDK’s core feature
extractor and (if supported) template matcher. The PID output for feature_extractor
shall be identical in both format and value to the CBEFF Product Identifier (PID) defined
by INCITS 378-2004 [4] (refer to section 6.4.4). If the SDK supports template matching
functionality the PID output for matcher shall have the two most significant bytes
(specified by INCITS 378-2004 as identifying the “owner” of the technology) set to
values identical to the corresponding bytes of feature_extractor. Otherwise, if the SDK
does not support matching functionality, the PID value returned for matcher shall be 0. .

Page 5 of 8

The Ongoing MINEX API Specification 26 May 2006

It may be assumed that memory for the feature_extractor and matcher parameters are
allocated before the call. Note that the two least significant bytes of the CBEFF PID
are defined by INCITS 378-2004 as identifying the version of the feature extractor
(referred to as PID “Type”). The two least significant bytes of feature_extractor
and matcher shall be set as specified by INCITS 378-2004 (i.e. they may either be set
to 0, or to a version number assigned by the “owner” of the technology).

Parameters
feature_extractor (output): A PID which identifies the SDK’s feature extractor.

matcher (output): A PID which identifies the SDK’s matcher.

Return Value

This function returns zero on success or a documented non-zero error code on failure. In
the latter case, both output parameters shall be set to 0.

3.3 Error Codes and Handling
The participant shall provide documentation of all (non-zero) error or warning
return codes (see section 4.3, Documentation).

The application should include error/exception handling so that in the case of a
fatal error, the return code is still provided to the calling application.

At minimum the following return codes shall be used.

Return
code Explanation

0 Success
1 Image size not supported
2 Failed to extract minutiae – unspecified error
3 Failed to extract minutiae – impression type not supported
4 Failed to match templates – null probe or gallery template
5 Failed to match templates – unable to parse probe template
6 Failed to match templates – unable to parse gallery template

All messages which convey errors, warnings or other information shall be
suppressed.

4 Software and Documentation

4.1 SDK Library and Platform Requirements
Individual SDKs provided must not include multiple “modes” of operation, or
algorithm variations. No switches or options will be tolerated within one library.
For example, the use of 2 different “coders” by a minutiae extractor must be split
across 2 separate SDK libraries.

Page 6 of 8

The Ongoing MINEX API Specification 26 May 2006

Participants shall provide NIST with binary code only (i.e. no source code) −
supporting files such as header (“.h”) files notwithstanding. It is preferred that the
SDK be submitted in the form of a single static library file (ie. “.LIB” for
Windows or “.a” for Linux). However, dynamic/shared library files are
permitted.

If dynamic/shared library files are submitted, it is preferred that the API interface
specified by this document be implemented in a single “core” library file with the
base filename ‘libminex’ (for example, ‘libminex.dll’ for Windows or
‘libminex.so’ for Linux). Additional dynamic/shared library files may be
submitted that support this “core” library file (i.e. the “core” library file may have
dependencies implemented in these other libraries).

Note that dependencies on external dynamic/shared libraries such as compiler-
specific development environment libraries are discouraged. If absolutely
necessary, external libraries must be provided to NIST upon prior approval by the
Test Liaison.

The SDK will be tested in non-interactive “batch” mode (i.e. without terminal
support). Thus, the library code provided shall not use any interactive functions
such as graphical user interface (GUI) calls, or any other calls which require
terminal interaction (e.g. calls to “standard input” or “standard output”).

NIST will link the provided library file(s) to a C language test driver application
(developed by NIST) using the GCC compiler (for Windows platforms
Cygwin/GCC version 3.3.3 will be used; for RedHat Linux 7.3 platforms GCC
version 2.96 will be used. All GCC compilers use Libc 6). For example,

gcc –o mintest mintest.c -L. –lminex

Participants are required to provide their library in a format that is linkable using
GCC with the NIST test driver, which is compiled with GCC. All compilation
and testing will be performed on x86 platforms running either Windows 2000 or
Red Hat Linux 7.3 (dependent upon the operating system requirements of the
SDK). Thus, participants are strongly advised to verify library-level compatibility
with GCC (on an equivalent platform) prior to submitting their software to NIST
to avoid linkage problems later on (e.g. symbol name and calling convention
mismatches, incorrect binary file formats, etc.).

4.2 Installation and Usage
The SDK must install easily (i.e. one installation step with no participant
interaction required) to be tested, and shall be executable on any number of
machines without requiring additional machine-specific license control
procedures or activation.

Page 7 of 8

The Ongoing MINEX API Specification 26 May 2006

The SDK’s usage shall be unlimited. No usage controls or limits based on
licenses, execution date/time, number of executions, etc. shall be enforced by the
SDK.

It is recommended that the SDK be installable using simple file copy methods,
and not require the use of a separate installation program. Contact the Test
Liaison for prior approval if an installation program is absolutely necessary.

4.3 Documentation
Complete documentation of the SDK shall be provided, and shall detail any
additional functionality or behavior beyond what is specified in this document.

The documentation must define all error and warning codes.

4.4 Speed
On average, a template match operation shall take no more than 10 milliseconds,
and a template creation operation shall take no more than 1 second to complete
(using a 2GHz Pentium IV).

References
[1] C. Wilson, et al., “Biometric Data Specification for Personal Identity
Verification,” NIST Special Publication 800-76
http://csrc.nist.gov/publications/nistpubs/800-76/sp800-76.pdf
http://csrc.nist.gov/publications/nistpubs/800-76/Errata-for-SP-800-76.pdf

[2] P. Grother, et al., “Performance and Interoperability of the INCITS 378
Template,” NIST IR 7296 http://fingerprint.nist.gov/minex04/minex_report.pdf

 [3] E. Tabassi, et al. “Finger Print Image Quality,” NISTIR 7151 2004
(Gaithersburg, MD: National Institute of Standards and Technology, August
2004) ftp://sequoyah.nist.gov/pub/nist_internal_reports/ir_7151/ir_7151.pdf

 [4] American National Standard for Information Technology – Finger
Minutiae Format for Data Interchange, ANSI/INCITS 378-2004, www.incits.org

Page 8 of 8

http://csrc.nist.gov/publications/nistpubs/800-76/sp800-76.pdf
http://csrc.nist.gov/publications/nistpubs/800-76/Errata-for-SP-800-76.pdf
http://fingerprint.nist.gov/minex04/minex_report.pdf
ftp://sequoyah.nist.gov/pub/nist_internal_reports/ir_7151/ir_7151.pdf
http://www.incits.org/

	Overview
	1 Fingerprint Image Data
	1.2 Resolution and Dimensions
	1.3 Sensor and Impression Types

	2 800-76 Compliant Templates
	3 Testing Interface Description
	3.1 Pre-defined Values
	3.2 Minutiae Extraction and Matching
	3.2.2 Create Template

	3.3 Error Codes and Handling

	4 Software and Documentation
	4.1 SDK Library and Platform Requirements
	4.2 Installation and Usage
	4.3 Documentation
	4.4 Speed

	References

